Binomial coefficients in an algebraic number field
نویسندگان
چکیده
منابع مشابه
AN ALGEBRAIC INTERPRETATION OF THE q-BINOMIAL COEFFICIENTS
Gaussian numbers, also called Gaussian polynomials or q-binomial coefficients are the q-analogs of common binomial coefficients. First introduced by Euler these polynomials have played an important role in many different branches of mathematics. Sylvester discovered the unimodality of their coefficients, using invariant theory. Gauss recognized the connection of the coefficients to proper integ...
متن کاملAlgebraic Polynomials with Random Coefficients with Binomial and Geometric Progressions
The expected number of real zeros of an algebraic polynomial ao a1x a2x · · · anx with random coefficient aj , j 0, 1, 2, . . . , n is known. The distribution of the coefficients is often assumed to be identical albeit allowed to have different classes of distributions. For the nonidentical case, there has been much interest where the variance of the jth coefficient is var aj ( n j ) . It is sh...
متن کاملThe Distribution of the Irreducibles in an Algebraic Number Field
We study the distribution of principal ideals generated by irreducible elements in an algebraic number field.
متن کاملGeometry of Binomial Coefficients
This note describes the geometrical pattern of zeroes and ones obtained by reducing modulo two each element of Pascal's triangle formed from binomial coefficients. When an infinite number of rows of Pascal's triangle are included, the limiting pattern is found to be "self-similar," and is characterized by a "fractal dimension" log2 3. Analysis of the pattern provides a simple derivation of the ...
متن کاملPlanar Binomial Coefficients
The notion of binomial coefficients (T S ) of finite planar, reduced rooted trees T, S is defined and a recursive formula for its computation is shown. The nonassociative binomial formula (1 + x) = ∑
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 1962
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa-7-4-381-388